Policy Development And Implementation Strategies

Contemporary Issues In The Indonesian Fish Logistics

> Author: Ing. Hafida Fahmiasari, S.T., M.Sc. Jr. Transport Specialist at IFC, World Bank Group Blue Economy Researcher

Introduction

- Name: Hafida Fahmiasari
- Born place and date: Sleman, 19 September 1991
- Working experience:
 - Transport Analyst, World Bank, Jakarta 2013-2014
 - Maritime Economics Manager, Royal HaskoningDHV, Jakarta 2016-2019
 - Business Development North America, Royal HaskoningDHV, Boston 2019-2020
 - Jr. Transport Specialist, IFC-World Bank Group, Washington D.C. 2020present

- Education experience:
 - Civil and Environmental Engineering, Universitas Gadjah Mada 2009-2013
 - International Civil Engineering Management, Hanzehogescool Groningen 2012-2013
 - Master of Transportation, Infrastructure, and Logistics, Delft University of Technology 2014-2016
 - Blue Economy Course, University of Seychelles, 2020

Outline

- Introduction
- Background
- Global Review of Marine Production
- Review of Marine Production in Indonesia
- The National Fisheries Logistics System (SLIN)
- Method to Locating Production, Distribution, and Buffer Stock Location
- Analysis of Location
- Sensitivity Analysis
- Conclusion and Lesson Learned

Background

The healthy ocean mean jobs, food and protection for billions of people around the world

Background

- Jobs in the ocean: 10-12 percent of the world's population
- FAO in 2006 estimated that 87% of persons engaged in fisheries production is in Asia (41.4 million)
 - 13 million Chinese
 - 6.2 million Indonesians
- The fisheries production in 2018= 96 million tons (FAO)
 = US\$436 billion

It induces a real complexity of the supply and distribution chain

- The fisheries production= 17% of total global animal protein
- Optimal distribution leads to the reduced total cost of these products
- Final price refers to the quality of fish

A macro study of supply chain location of fish product

- Production center
- Distribution center
- Buffer Stock

Global Review of Marine Production

The growing production and consumption of marine production in recent 65 years

Global Review 9

FIGURE 1 WORLD CAPTURE FISHERIES AND AQUACULTURE PRODUCTION

 In 1975: aquaculture product is 7 percent of fish for human consumption → 26% in 1994 → 39% in 2004 → 46% in 2018

• Decline in 2000s by climate change effect, population growth

Figure 1: Global growth of marine products (Source: FAO, 2016)

Indonesia is the 2nd leading global capture producers in 2018

Global Review

Figure 2: Top Ten Global Capture Producers (Source: FAO, 2020)

Indonesia is the 2nd leading global aquaculture producers in 2018

20 18 10 10 10 14 18.5 12 9.2 10 8 6 4 Figure 3: Top Five Global 1.7 1.5 2 Aquaculture Producers 0.6 (Source: FAO, 2020) 0 China Indonesia **Republic of Korea** Philippines Democratic People's Republic of Korea

Global Review

National Review of Marine Production

Indonesia is as top five countries that producing both capture fisheries and aquaculture commodities

- The annual average fish consumption in Indonesia (51 kg per capita) is higher than the global average (21 kg per capita)
- Indonesia locates in the important crossroad of numerous marine commodities: salmon, crustaceans, pelagic, and fishmeal and fish oil

National

Review

The increasing of fish consumption in Indonesia

National Review 14

Consumption per capita

Figure 4: Fish consumption per capita in Indonesia (Source: Ministry of Ministry of Maritime Affairs and Fisheries, 2019)

High fish consumption per capita around Indonesia

National Review 15

Figure 4: Average fish consumption per capita in Indonesia (Source: Author's own creation with data Ministry of Ministry of Maritime Affairs and Fisheries, 2015)

Top 5 consuming provinces:

- Maluku (55.35 kg)
- Southeast Sulawesi (52.6 kg)
- Riau Islands (52.58 kg)
- North Maluku (50.750)
- North Sulawesi (48.99 kg)

Capture fisheries area production in Indonesia

WPP-NRI 571 489.920 ton (8,11%) WPP-NRI 716 WPP-NRI 327.364 ton 711 WPP-NRI 2 (5,42%) 717 665.754 ton (11,03%) 161.496 ton WPP-NRI (2,67%) 715 482.035 ton (7,98%) WPP-NRI **WPP-NRI 572 WPP-NRI 712 WPP-NRI 714** WPP-NRI 713 1.081.178 ton 602.148 ton 604.515 ton 718 750.377 ton (9,97%) (17,91%)(10,01%) 413.118 ton (12,43%) (6,84%) **WPP-NRI 573** Figure 5: Classification of capture fisheries area 459.749 ton production based on WPPNRI. (Source: Ministry of (7,61%) Maritime Affairs and Fisheries, 2014)

National Review 16 The problems of fish logistics in Indonesia

- The deployment areas of production and consumption is very broad,
- Activities of illegal, unreported, and unregulated (IUU) fishing,
- Fishing fleet is still dominated by small size vessels,
- Facilities and infrastructure are still limited, and
- Production systems hasn't been integrated from upstream and downstream → we try to answer this

The National Fisheries Logistics System(SLIN)

The National Fisheries Logistics System (SLIN)

Industri Pengolahan terpenuhi kebutuhannya

Produk di hulu terserap dengan harga relatif stabil OPERATOR PENDUKUNG DI PUSAT DISTRIBUSI **KEGIATAN HULU** (PENANGKAPAN & 5 2 BUDIDAYA) Pusat Produksi Konsumen DN TPI/PPD Kapal Angkut Ikan Pusat Distribu UPI Pasar Ikan HOREKA Eksportir 00-00-0 Konsumen LN Pelabuhar **Jasa Logistik** Muat Jaminan Ketersediaan & Keteriangkauan Harga

Figure 6: Operational scheme of SLIN (Source: Ministry of Maritime Affairs and Fisheries, 2016) SLIN: the supply chain management system of fish and fishery products, materials, and production equipment, as well as information of the procurement, storage, and distribution

SLIN

Components of SLIN

Method in Locating Supply Chain Points

Comparing several methods

Selected Method 22

MCA internal consistency and logical soundness, transparency, ease of use, and quantifiable

CEA

Requires precise monetized data in each criterion AHP

Time limitation

FA Requires precise monetized data in each criterion

Figure 8: The methods

The selected criterions in two assessments

1 st assessment	2 nd assessment
 Draft of port Production of city/district Production of province Consumption of city/district Fisheries processing facility capacity 	 Draft of port Production of city/district Production of province Consumption of city/district Fisheries processing facility capacity Population % of infrastructure spending in APBD % of labour supply Congestion

Analysis of Location

Analysis

25

Creating the interval of parameters of each criterion

First asse	scmont				Criterion	Interval (ton)	Score	Description of Parameter Interval
Criterion	Interval (m)	Score	Description of Parameter Interval		Production of City/Distri	< 30,000 30,000-60,000 60,000-90,000 90,000-	2 4 6	The interval is determined based on the highest and lowest
	< 6 6-9	2 4 The interval is determined based	The interval is determined based		ct	120,000 > 120,000	8 10	City/District
Draft	9-12 12-15 > 15	6 8 10	on the nearest port's draft (from the shallowest to the deepest)		Production of	<200,000 200,000- 300,000 300,000-	2 4 6	The interval is determined based on the highest and lowest
Table 1: Interval of parameter in Draft criteria			Province	400,000 400,000- 500,000	8 10	production inside the Province		

Table 2: Interval of parameter in Production of city and province criteria

<500,000

Analysis

26

Creating the interval of parameters of each criterion

Criterio n	Interval (kg/capita/	Score	Description of Parameter	Criterion	Interval (ton)	Score	Description of Parameter Interval
	year)		interval		< 120,000		
Consump tion of City/Dist rict	< 20 20-40 40-60 60-80 > 80	2 4 6 8 10	The interval is determined based on the highest and lowest fish consumption inside the	Fish Processin g Facilities Capacity	240,000- 240,000- 360,000 360,000- 480,000 > 480,000	2 4 6 8 10	The interval is determined based on the available fish processing facilities
			City/District	Table 4: Inte	erval of parame	eter in Fig	sh processing

facility capacity criteria

Table 3: Interval of parameter in Consumption criteria

Weighing each criterion

Analysis

Decision	Criterion	Weight
	Port Draft	0.2
Production Location	Production of City/District	0.35
	Production of Province	0.3
	Consumption of City/District	0.05
	Fish Processing Facilities Capacity	0.1
	Port Draft	0.2
Distribution Location	Production of City/District	0.2
	Production of Province	0.15
	Consumption of City/District	0.15
	Fish Processing Facilities Capacity	0.3
	Port Draft	0.25
Buffer Stock	Production of City/District	0.15
	Production of Province	0.1
	Consumption of City/District	0.2
	Fish Processing Facilities Capacity	0.3

Again, the process of creating the interval and weighing criterion are repeated for the second assessment

Table 5: Weight of the criteria

Candidate from the clusters

Cluster	Production and Distribution centre
	Sabang City, North Aceh District, Medan
1	City
	Pemangkat District, Natuna District,
2	Anambas District
3	Indramayu District, Bandung City
	Semarang City, Demank District, Pati
4	District
5	Surabaya City, Pacitan District
6	Mataram City, East Flores District
7	Pahuwato District, Banggai District
8	Makassar City, Kendari City
9	Bitung City
10	South Halmahera District, Ambon City
11	Sorong City
12	Aru Islands District, Tual City

Table 6: Candidates of Production and Distribution Center

Buffer Stock Candidate
Medan
Sibolga
Pontianak
Bandung
Surabaya
Sorong
Semarang
Bali
Makassar
Bitung
Kupang
Ambon
Sorong

Table 7: Candidates of Buffer Stock

Production centre results

Analysis

29

Candidato	Clustor	Score in 1 st	Score in 2 nd
Canuluate	Cluster	assessment	assessment
Medan City	1	6.4	5.6
Pemangkat District	2	3.4	4.2
Indramayu District	3	4.6	5.3
Pati District	4	3.5	4.2
Surabaya City	5	6.5	6.8
Mataram City	6	4.3	4.8
Banggai District	7	3.5	4.2
Makassar City	8	4.0	4.4
Bitung City	9	7.4	6.6
Ambon City	10	8.2	6.2
Sorong City	11	3.7	4.2
Tual City	12	6.1	5.4

Figure 10: Map of scoring

Table 8: Scoring result of production centre

Distribution centre results

Analysis

30

Candidato	Clustor	Score in 1 st	Score in 2 nd
Canuldate	Cluster	assessment	assessment
Modan City	1	4.8	Sabang
medall City	I		City: 4.3
Anambas	n	3.3	4.1
District	L		
Indramayu City	3	4.6	4.3
Pati District	4	3.4	4.1
Surabaya City	5	5.3	5.8
Mataram City	6	4.2	4.2
Banggai	7	3.4	3.9
District	/		
Makassar City	8	4.0	4.1
Bitung City	9	7.5	6.3
Ambon City	10	6.2	4.7
Sorong City	11	3.8	3.9
Tual City	12	5.0	4.4

Figure 11: Map of scoring

Table 9: Scoring result of production centre

Buffer stock results

Analysis

31

Dapling	The 1 st assessment	The 2 nd
Ranking		assessment
1	Bitung	Surabaya
2	Surabaya	Bitung
3	Ambon	Ambon
4	Denpasar	Denpasar
5	Makassar	Makassar
6	Medan	Sibolga
7	Sibolga	Sorong
8	Sorong	Semarang
9	Semarang	Medan
10	Pontianak	Pontianak
11	Kupang	Kupang
12	Serang	Serang
13	Bandung	Bandung

Figure 12: Map of scoring

Table 10: Scoring result of buffer stock

Sensitivity Analysis

Changing the weight of each criteria for second assessment

Sensitivity Analysis 33

Criterion Change	Action
Infrastructure ++ Social	Add weights of port draft, congestion, % of infrastructure budget Reduce weights of population and labor supply
Infrastructure - Social ++	Add weights of population and labor supply Reduce weights of port draft, congestion, % of infrastructure budget

After changing the weight, the results are the same

Table 11: changing weight in each criteria

Conclusion and Lesson Learned

Conclusion

- Both methods result the same priority locations of production center
- Distribution center \rightarrow almost the same between both methods, except in cluster 1
- Buffer stock \rightarrow in the 2nd method sets Surabaya as the highest one
- The additional socio-economics criterions reduce the gap between the highest and the least ranking in each cluster
- These criterions also add more score in each location, except the Eastern Indonesia locations
- The 2^{nd} method \rightarrow more robust analysis

Lesson Learned

- Logistics and supply chain for the Indonesian marine resources needs to plan and managed properly
- The assessment of 20 possible marine logistics hubs reveals that prioritization is needed to ensure that the commercial viability of the investment
- Further study should include the criterion of the availability land and supporting infrastructure

Jalesleva Jayamahe! Thank you